Role of structural saturation and geometry in the luminescence of silicon-based nanostructured materials.

نویسندگان

  • Zhang
  • Costa
  • Bertran
چکیده

The structural saturation and stability, the energy gap, and the density of states of a series of small, siliconbased clusters have been studied by means of the PM3 and some ab initio ~HF/6-31G* and 6-31111G**, CIS/6-31G* and MP2/6-31G*! calculations. It is shown that in order to maintain a stable nanometric and tetrahedral silicon crystallite and remove the gap states, the saturation atom or species such as H, F, Cl, OH, O, or N is necessary, and that both the cluster size and the surface species affect the energetic distribution of the density of states. This research suggests that the visible luminescence in the silicon-based nanostructured material essentially arises from the nanometric and crystalline silicon domains but is affected and protected by the surface species, and we have thus linked most of the proposed mechanisms of luminescence for the porous silicon, e.g., the quantum confinement effect due to the cluster size and the effect of Si-based surface complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and optical properties of n- type porous silicon– effect of etching time

Porous silicon layers have been prepared from n-type silicon wafers of (100) orientation. SEM, FTIR and PL have been used to characterize the morphological and optical properties of porous silicon. The influence of varying etching time in the anodizing solution, on structural and optical properties of porous silicon has been investigated. It is observed that pore size increases with etching tim...

متن کامل

Novel nanostructured materials to develop oxygen-sensitive films for optical sensors

Novel nanostructured materials, such as aluminum oxide (AlOOH), silicon oxide (SiO2) or zirconium oxide (ZrO2) embedded into PVA, were investigated as potential matrices to incorporate organometallic compounds (OMCs) for the development of optical oxygen-sensitive sensors which make use of the principle of luminescence quenching.

متن کامل

Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies...

متن کامل

Resonant carrier scattering by core-shell nanoparticles for thermoelectric power factor enhancement

Formation mechanisms of spatially-directed zincblende gallium nitride nanocrystals Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites Spectrally and temporarily resolved luminescence study of short-range order in nanostructured amorphous ZrO2 Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemica...

متن کامل

Structural, Optical and Magnetic Feature of Core-Shell Nanostructured Fe3O4@GO in Photocatalytic Activity

In this paper, structural, magnetic, optical, and photocatalytic properties of core-shell structure Fe3O4@GO nanoparticles have been compared with Fe3O4 nanoparticles in the degradation of methyl blue and methyl orange. For this purpose, GO nanosheets were wrapped around the APTMS-Fe3O4 nanoparticles and then charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 53 12  شماره 

صفحات  -

تاریخ انتشار 1996